Problem 88

Vector $\overrightarrow{\mathbf{B}}$ is 5.0 cm long and vector $\overrightarrow{\mathbf{A}}$ is 4.0 cm long. Find the angle between these two vectors when $|\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}|=3.0 \mathrm{~cm}$.

Solution

The length of each vector is given, so the magnitude of each is known.

$$
\begin{aligned}
& A=|\overrightarrow{\mathbf{A}}|=4.0 \mathrm{~cm} \\
& B=|\overrightarrow{\mathbf{B}}|=5.0 \mathrm{~cm}
\end{aligned}
$$

Suppose the two vectors lie in the $x y$-plane and can be written as $\overrightarrow{\mathbf{A}}=\left\langle A_{x}, A_{y}\right\rangle$ and $\overrightarrow{\mathbf{B}}=\left\langle B_{x}, B_{y}\right\rangle$. Let θ be the angle between them. Then

$$
\begin{aligned}
3.0 \mathrm{~cm} & =|\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}| \\
& =\left|\left\langle A_{x}, A_{y}\right\rangle+\left\langle B_{x}, B_{y}\right\rangle\right| \\
& =\left|\left\langle A_{x}+B_{x}, A_{y}+B_{y}\right\rangle\right| \\
& =\sqrt{\left(A_{x}+B_{x}\right)^{2}+\left(A_{y}+B_{y}\right)^{2}} .
\end{aligned}
$$

Square both sides.

$$
\begin{aligned}
9.0 \mathrm{~cm}^{2} & =\left(A_{x}+B_{x}\right)^{2}+\left(A_{y}+B_{y}\right)^{2} \\
& =\left(A_{x}^{2}+2 A_{x} B_{x}+B_{x}^{2}\right)+\left(A_{y}^{2}+2 A_{y} B_{y}+B_{y}^{2}\right) \\
& =\left(A_{x}^{2}+A_{y}^{2}\right)+\left(B_{x}^{2}+B_{y}^{2}\right)+2 A_{x} B_{x}+2 A_{y} B_{y} \\
& =A^{2}+B^{2}+2\left(A_{x} B_{x}+A_{y} B_{y}\right) \\
& =A^{2}+B^{2}+2 \overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}} \\
& =A^{2}+B^{2}+2|\overrightarrow{\mathbf{A}}||\overrightarrow{\mathbf{B}}| \cos \theta \\
& =A^{2}+B^{2}+2 A B \cos \theta
\end{aligned}
$$

Solve this equation for $\cos \theta$.

$$
\begin{gathered}
\cos \theta=\frac{9.0 \mathrm{~cm}^{2}-A^{2}-B^{2}}{2 A B}=\frac{9.0 \mathrm{~cm}^{2}-(4.0 \mathrm{~cm})^{2}-(5.0 \mathrm{~cm})^{2}}{2(4.0 \mathrm{~cm})(5.0 \mathrm{~cm})}=-\frac{4}{5} \\
\theta=\cos ^{-1}\left(-\frac{4}{5}\right) \approx 143^{\circ}
\end{gathered}
$$

